If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+4x-198=0
a = 3; b = 4; c = -198;
Δ = b2-4ac
Δ = 42-4·3·(-198)
Δ = 2392
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2392}=\sqrt{4*598}=\sqrt{4}*\sqrt{598}=2\sqrt{598}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{598}}{2*3}=\frac{-4-2\sqrt{598}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{598}}{2*3}=\frac{-4+2\sqrt{598}}{6} $
| 15=21+2x | | 3x+3+5x=19 | | 2x-15=7x+21 | | 3x+5x+7-9=2x+4 | | 16−5x=3x | | 4x-16=2x+60 | | 10x+7=3x+63 | | 0.41n=7.38, | | 3x−4+2x=5(x−4) | | 11r/16+7r/8=25/16 | | u-987=(-166) | | 7x+4+10x-69=12x-25 | | -20=5(y-7) | | t-3.5=9 | | x5-3=-17 | | 920=v+126 | | -3x=5=10 | | (4/3)=(8/x-1) | | -9(6-r)=18-54-9r=18-9r=72 | | 493=g+21 | | 4(7-3n)=112 | | 2x+x-6=9 | | 0.375x-17=10 | | 4x-3+5x-13=180 | | -2(x+9)=-5x+12 | | 6x-2x=8x | | -97=-9x+-7 | | 4x-3+5x-13=90 | | 1/2=2/3+x | | 0.5x+0.25x=13.5 | | k/9+1=0 | | v-1/3=4 |